
Python Native
Windows GUI
with DelphiVCL
Anbarasan Anbazhagan

Wed, Dec 23rd, 2020

Part 1

Abstract
Sometimes your application needs a user interface, but what is the best way to make one for
Python applications? Enter DelphiVCL for Python. The VCL is a mature Windows native GUI
framework with a huge library of included visual components and a robust collection of 3rd
party components. It is the premier framework for native Windows applications, but how to use
it with Python? Thanks to the DelphiVCL Python package (based on the open-source
Python4Delphi library), the VCL is a first-class package for building native Windows GUIs with
Python. Need more design tools? You can build the entire GUI in Delphi and then write all the
logic in Python.

Join this free webinar to learn how to catapult your Python GUI game to new levels you never
imagined possible. DelphiVCL is the fastest, most mature, and complete GUI library for native
Windows Python GUI development.

Agenda
• Why Native Windows GUI is Important

• Performance, Consistent Behavior, Microsoft Active Accessibility (MSAA), &
Handles

• Other common Python GUI frameworks
• TkInter & PyQT: How they work and their drawbacks

• Introducing DelphiVCL for Python
• Based on Python4Delphi and Embarcadero Delphi
• Introduction to Delphi & VCL
• Using the package directly from Python
• Using the Delphi visual designers
• Overview of VCL components
• Using the DocWiki for documentation

• What about cross platform?
• DelphiFMX for Python is coming soon for Windows, macOS, Linux, and Android

• Performance: Windows provides hardware acceleration for native
controls.

• Windows Handles: Native Windows controls have Windows handles
providing better OS and intra-application integration.

• Consistent Behavior: The use of native controls gives users consistent
behavior between all applications they use

• Microsoft Active Accessibility (MSAA) is the framework that leverages
native controls to provide accessibility interfaces like screen readers

Check this Simple Explanation By Marco Cantu about Desktop Native

https://www.youtube.com/watch?v=dCE_oz9ZY4U

Native Windows GUI

https://www.youtube.com/watch?v=dCE_oz9ZY4U

Most Common

• Tkinter (TK Interface) - Binding for the cross-platform Tk widget toolkit
• PyQt (pie-cute) - Binding for the cross-platform Qt widget library

Others

• PySide - Also uses Qt
• wxPython - Binding for wxWidgets
• PyGTK - Binding for GTK (GNOME)
• Kivy - Focused on mobile and cross-platform

None provide native Window controls or Windows platform integration.

Other Python GUI Frameworks

PyQt and Qt
• Python binding for the Qt widget toolkit
• Originally by Trolltech (1991) and Nokia (2008)

• GPL/LGPL license, or Qt Commercial license
• Open source or paid license

• Must be installed
• pip install PyQt5

• Fusion style option comes close to matching

platform look, but still doesn’t use native controls

Tkinter and the Tk GUI toolkit
• The default Python GUI

• included with most Python installs

• Available under Python license

• Uses Tcl/Tk cross platform widgets

• Supports various styles
• No OS style integration

• More information
• docs.python.org/3/library/tk.html

https://docs.python.org/3/library/tk.html

Tkinter Example
import tkinter as tki

class Application(tki.Frame):
 def __init__(self, master=None):
 super().__init__(master)
 self.list = tki.Listbox(self)
 self.editb = tki.Button(self, text="Add", command=self.add_to_list)
 self.edit = tki.Entry(self)
 self.label = tki.Label(self, text="Hello Python" , anchor='w')
 self.master = master
 self.place(anchor='nw', x=10, y=10, relwidth=1, relheight=1,
bordermode='outside')
 self.create_widgets()

 def create_widgets (self):
 self.label.place(x=10, y=10, width=100, height=20)
 self.edit.place(x=10, y=30, width=250, height=24)
 self.editb.place(x=270, y=24, width=100, height=30)
 self.list.place(x=10, y=60, width=300, height=300)

 def add_to_list(self):
 self.list.insert(tki.END, self.edit.get())

root = tki.Tk()
root.minsize(500, 400)
ttl = root.title("A Tkinter form")
app = Application(master=root)
app.mainloop()

PyQt Example
import sys
from PyQt5.QtWidgets import *

class PyQtLayout(QWidget):

 def __init__(self):
 super().__init__()
 self.UI()

 def UI(self):
 self.setGeometry(10, 10, 280, 280)
 self.move(10, 10)
 self.setWindowTitle('A Qt Form...')
 label = QLabel('Hello Python', self)
 label.move(10, 10)
 edit = QLineEdit("", self)
 edit.move(10, 30)
 edit.resize(170, 20)
 button = QPushButton("Add", self)
 button.move(190,28)
 listView = QListWidget(self)
 listView.move(10, 60)
 def buttonClick():
 listView.addItem(edit.text())
 button.clicked.connect(buttonClick)
 self.show()

def main():
 app = QApplication(sys.argv)
 #QApplication.setStyle(QStyleFactory.create('Windows'))
 ex = PyQtLayout()
 sys.exit(app.exec_())

if __name__ == '__main__':
 main()

DelphiVCL.py Example
from DelphiVCL import *

class MainForm(Form):
 def __init__(self, Owner):
 self.Caption = "A VCL Form..."
 self.SetBounds(10, 10, 340, 410)
 self.lblHello = Label(self)
 self.lblHello.SetProps(Parent=self, Caption="Hello Python", Top=10, Left=10, Width=100, Height=24)
 self.edit1 = Edit(self)
 self.edit1.SetProps(Parent=self, Top=30, Left=10, Width=200, Height=24)
 self.button1 = Button(self)
 self.button1.SetProps(Parent=self, Caption="Add", OnClick=self.Button1Click)
 self.button1.SetBounds(220,29,90,24)
 self.lb1 = ListBox(self)
 self.lb1.SetProps(Parent=self)
 self.lb1.SetBounds(10,60,300,300)

 def Button1Click(self, Sender):
 self.lb1.Items.Add(self.edit1.Text)

def main():
 Application.Initialize()
 Application.Title = "MyDelphiVCLApp"
 f = MainForm(Application)
 f.Show()
 FreeConsole()
 Application.Run()
main()

Comparing the Forms

Windows 10
Styling

Right Click in Edit Box

Tkinter has no Right Click menu by default
in the Entry box

Operating system
Extensions by default
(fully customizable)

Missing OS
integrations

VCL
• Uses Windows controls
• Each control has a handle
• Support for UI testing
• Accessibility support

PyQt
• Fusion style looks native
• No individual controls
• No OS integration
• No Windows handles

● Object Pascal(Delphi) is an extremely powerful language based upon
core foundations such as a good program structure and extensible data
types. These foundations are partially derived from the traditional Pascal
language, but even the core language features have seen many
extensions from the early days.

 Download a copy of the Object Pascal Handbook by Marco Cantu…FREE!

● Windows-specific VCL (Visual Component Library) is a set of
components and classes for the rapid development of Windows
applications in the Delphi and C++ languages.

● The GUI components of the VCL are native Windows GUI components.

Delphi & VCL

http://forms.embarcadero.com/DownloadMarcoCantueBook

Overview of VCL Components
● Visual Components

Visual components, such as TForm and TSpeedButton, are called controls and
descend from TControl. Controls are used in GUI applications, and appear to the
user at run time.

● Non Visual components
Non Visual components, such as TDataSource. Allows you to manipulate their
properties and events just as you would a visual control at design time.

● Utility classes
Classes that are not components (that is, classes that descend from TObject but
not TComponent) are also used for a variety of tasks. Typically, these classes are
used for accessing system objects (such as a file or the clipboard) or for transient
tasks (such as storing data in a list).

VCL Visual Designers
● The Form Designer (or Designer) is displayed automatically when you are creating or

editing a graphical application that uses a form file, either a .dfm or an .fmx file.
● A VCL form displays the standard Windows buttons for Minimize, Resize, and Close

commands. Drag and Drop components from ToolPallete and you can view and set
properties and events visually using ObjectInspector.

● Ultimate Design Guidelines Support with VCL Components.
● Taking a Snapshot of Your Form (VCL Only)
● LiveBindings is a data-binding feature supported by both the VCL and FireMonkey

frameworks. It is an expression-based framework, which means it uses bindings
expressions to bind objects to other objects or to dataset fields.

● Create new LiveBindings between various visual components you have on your form.
● Edit the existing LiveBindings.
● Visualize all the LiveBindings that you have created.
● Export your binding diagram as an image file.

● Python for Delphi (P4D) is a set of free components that wrap up the Python DLL into
Delphi.

● Easily execute Python scripts, create new Python modules and new Python types.
● Can create Python extensions as DLLs and provides different levels of functionality:

○ Low-level access to the python API

○ High-level bi-directional interaction with Python

○ Access to Python objects using Delphi custom variants (VarPyth.pas)

○ Wrapping of Delphi objects for use in python scripts using RTTI (WrapDelphi.pas)

○ Creating python extension modules with Delphi classes and functions

● Design Beautiful Desktop and Mobile App UIs with Embarcadero Delphi

● Code Faster and Smarter with Delphi in built and Rich 3rd party Ecosystem.
● Debug Faster with Integrated Native Debugging
● Compile and Deploy High-Performance Native Apps
● Easily Improve the Quality of Your Code,Collaborate and Extend the IDE

○

Python4Delphi & Embarcadero Delphi

https://www.python.org/
https://www.delphi.com/

● DelphiVCL for Python is nothing but wrapping of Delphi objects for use in python scripts
using RTTI (WrapDelphi.pas) explicitly for VCL Components(WrapDelphiVCL.pas)

● WrapDelphiVCL.pas uses following unit files.
○ WrapDelphiTypes, WrapDelphiClasses,

○ WrapDelphiWindows, WrapDelphiControls,

○ WrapDelphiGraphics, WrapDelphiForms,

○ WrapDelphiActnList, WrapDelphiStdCtrls,

○ WrapDelphiComCtrls, WrapDelphiExtCtrls,

○ WrapDelphiButtons, WrapDelphiGrids;

● Wrappers helps to create and access Delphi Objects quickly from python.
● These wrappers contains container classes to extend and expose your custom

events,methods,variables which can used in python script.

Using DelphiVCL For Python

● Extend this two units (WrapDelphi.pas) and (WrapDelphiVCL.pas) as a Python Extension
Module e.g) Delphi4Python.pyd

● Create PythonEngine, PythonModule, PyDelphiWrapper and expose the function as
PyInit_<ExtensionDllName>

● Import the module in a Python script e.g) from Delphi4Python import *
● Use the Python variables, get/set methods which is exposed in WrapDelphiVCL classes

like Form,Application,Button,PageControl,Edit,CheckBox etc to create Python Objects
● Set the properties of Python Objects using SetProps(propertyname = propertyvalue,...N)

or each property one by one. Define events and custom methods required to manipulate
the GUI events and operations in the script.

● Initialize the Application, show the GUI app. Save the PythonScript and Run the script
from command prompt. e.g) D:\DelphiVclWebinar>C:\Python\Python39\Python.exe
Sample.py

Using DelphiVCL For Python, Steps:

DocWiki for Documentation
Delphi VCL DockWiki’s
http://docwiki.embarcadero.com/RADStudio/en/Main_Page
http://docwiki.embarcadero.com/RADStudio/en/VCL
http://docwiki.embarcadero.com/RADStudio/en/Form_Designer
http://docwiki.embarcadero.com/RADStudio/en/How_To_Build_VCL_Forms_Applications
http://docwiki.embarcadero.com/RADStudio/en/VCL_Styles_Overview

Other Resources: Python4Delphi
https://github.com/pyscripter/python4delphi

Blog Resources:
https://blogs.embarcadero.com/?s=python4delphi

Youtube Embarcadero channel link:
https://www.youtube.com/channel/UCMmsCQhkz-WlJ-IVBzPhbgA

Python4Delphi
https://www.youtube.com/watch?v=aCz5h96ObUM (Webinar 1)
https://www.youtube.com/watch?v=ssIKb3nJw5c (Webinar 2)
https://www.youtube.com/watch?v=hjY6lBgrHhM (Getting started with Python4Delphi)

http://docwiki.embarcadero.com/RADStudio/en/Main_Page
http://docwiki.embarcadero.com/RADStudio/en/VCL
http://docwiki.embarcadero.com/RADStudio/en/Form_Designer
http://docwiki.embarcadero.com/RADStudio/en/How_To_Build_VCL_Forms_Applications
http://docwiki.embarcadero.com/RADStudio/en/VCL_Styles_Overview
https://github.com/pyscripter/python4delphi
https://blogs.embarcadero.com/?s=python4delphi
https://www.youtube.com/channel/UCMmsCQhkz-WlJ-IVBzPhbgA
https://www.youtube.com/watch?v=aCz5h96ObUM
https://www.youtube.com/watch?v=ssIKb3nJw5c
https://www.youtube.com/watch?v=hjY6lBgrHhM

Summary
● Learning Delphi and Building Native GUI apps is Easier and faster.
● Quite lot of resources with Rich third party ecosystem is available to get

started.

● Python has vast packages to ease developers from basic programming

task to advanced Scientific,ML,AI,Deep learning related tasks.

● Combining the Strengths of Delphi and Python helps users to build Ultra

fast Native GUI Apps.

Q & A

● Anbarasan : naanbu.dreamy@gmail.com

mailto:naanbu.dreamy@gmail.com

